Liōng-chí ián-sǹg-hoat
Liōng-tsí ián-sǹg-huat (ing-gú: quantum algorithm; Liōng-tsí sǹg-huat) teh liōng-tsí kè-sǹg ê hiān-si̍t bôo-hîng tíng-kuân ūn-hîng ê ián-sǹg-huat, tiānn-tiānn iōng ê bôo-hîng sī kè-sǹg ê liōng-tsí tiān-lōo bôo-hîng.[1][2] King-tián (hi̍k-tsiá hui liōng-tsí) ián-sǹg-huat sī iú-hiān ê tsí-līng hē-lia̍t, hi̍k-tsiá kái-kuat būn-tê ê suî-ê kuè-tîng, kî-tiong ta̍k ê pōo-sòo hi̍k-tsiá tsí-līng lóng ē-sái teh king-tián kè-sǹg-ki tíng-kuân tsip-hîng. Kāng-khuán, liōng-tsí ián-sǹg-huat sī tsi̍t-ê suî-ê ê kuè-tîng, kî-tiong ta̍k ê lóng ē-sái teh liōng-tsí kè-sǹg-ki tíng-kuân tsip-hîng. Sui-bóng sóo-ū ê king-tián ián-sǹg-huat mā ē-sái teh liōng-tsí kè-sǹg-ki tíng-kuân tsip-hîng, [3]:126 su̍t-gí liōng-tsí ián-sǹg-huat thong-siông iōng-teh hia--ê khuànn-khí-lâi pún-tsit siōng sī liōng-tsí ê ián-sǹg-huat, hi̍k-tsiá sú-iōng liōng-tsí kè-sǹg ê tsi̍t-kuá ki-pún ti̍k-ting, pí-jû liōng-tsí tha̍h-ka hi̍k-tsiá liōng-tsí tak-tînn.
Sú-iōng king-tián kè-sǹg-ki bô-huat-tōo phuànn-tīng ê būn-tê sú-iōng liōng-tsí kè-sǹg-ki iū-koh bô-huat-tōo phuànn-tīng.[4]:127 Liōng-tsí ián-sǹg-huat ê ū tshù-bī tsi sóo-tsāi, teh in khó-lîng ē-tàng pí king-tián ián-sǹg-huat kok-hāu kín lâi kái-kuat bóo-mí būn-tê, in-uī liōng-tsí ián-sǹg-huat lī-iōng ê liōng-tsí tha̍h-ka kah liōng-tsí tak-tînn khó-lîng bô-huat-tōo kái-kuat teh king-tián kè-sǹg-ki tíng-kuân tsìn-hîng ū-hāu ê bôo-gí (tsham-ua̍t liōng-tsí pà-kuân ).
Siong tshut-miâ ê ián-sǹg-huat sī iōng-teh in-sik hun-kái ê Shor ián-sǹg-huat kah iōng-teh tshiau-tshuē hui kiat-kòo-huà sook-i-khòo hi̍k-tsiá bô sī-lia̍t-pió ê Grover ián-sǹg-huat. Shor ián-sǹg-huat ê ūn-hîng sok-tōo pí siong tshut-miâ ê king-tián in-sik hun-kái ián-sǹg-huat (phóo-thong sòo-i̍k thai-suán-hoat (general number field sieve)) kín tsiânn-tsē (uá-beh thîng-hiān tsí-sòo-kip).[5] Grover ián-sǹg-huat ê ūn-hîng sok-tōo pí kâng tsi̍t-ê jīm-bū ê siong-hó ê king-tián ián-sǹg-huat[6] suànn-sìng tshiau-tshuē kín nn̄g-puē.
Tsù-kái
[siu-kái | kái goân-sí-bé]- ↑ Nielsen, Michael A.; Chuang, Isaac L. (2000). Quantum Computation and Quantum Information. Cambridge University Press. ISBN 978-0-521-63503-5.
- ↑ Mosca, M. (2008). "Quantum Algorithms". arXiv:0808.0369 [quant-ph].
- ↑ Lanzagorta, Marco; Uhlmann, Jeffrey K. (2009-01-01). Quantum Computer Science. Morgan & Claypool Publishers. ISBN 9781598297324.
- ↑ Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (2nd pán.). Cambridge: Cambridge University Press. ISBN 978-1-107-00217-3.
- ↑ "Shor's algorithm". goân-loē-iông tī 2023-01-12 hőng khó͘-pih. 2023-07-22 khòaⁿ--ê.
- ↑ "IBM quantum composer user guide: Grover's algorithm". quantum-computing.ibm.com. 7 June 2022 khòaⁿ--ê.
Tsham-ua̍t
[siu-kái | kái goân-sí-bé]- Quantum machine learning
- Quantum optimization algorithms
- Quantum sort
- Primality test
Guā-pōo liân-kiat
[siu-kái | kái goân-sí-bé]- The Quantum Algorithm Zoo: A comprehensive list of quantum algorithms that provide a speedup over the fastest known classical algorithms.
- Andrew Childs' lecture notes on quantum algorithms
- The Quantum search algorithm - brute force Archived 2018-09-01 at the Wayback Machine..
- QUANTUM FOR REAL-WORLD IMPACT $5 MILLION
Tiâu-tsa
[siu-kái | kái goân-sí-bé]- Smith, J.; Mosca, M. (2012). "Algorithms for Quantum Computers". Handbook of Natural Computing. p. 1451. doi:10.1007/978-3-540-92910-9_43. ISBN 978-3-540-92909-3.
- Childs, A. M.; Van Dam, W. (2010). "Quantum algorithms for algebraic problems". Reviews of Modern Physics. 82 (1): 1–52. arXiv:0812.0380 . Bibcode:2010RvMP...82....1C. doi:10.1103/RevModPhys.82.1.