1859 nî

Wikipedia (chū-iû ê pek-kho-choân-su) beh kā lí kóng...
跳至導覽 跳至搜尋
chhian-liân-kí: 2 chhian-liân-kí
sè-kí: 18 sè-kí | 19 sè-kí | 20 sè-kí
cha̍p-nî-kí: 1820 nî-tāi | 1830 nî-tāi | 1840 nî-tāi | 1850 nî-tāi | 1860 nî-tāi | 1870 nî-tāi | 1880 nî-tāi
: 1854 nî | 1855 nî | 1856 nî | 1857 nî | 1858 nî | 1859 nî | 1860 nî | 1861 nî | 1862 nî | 1863 nî | 1864 nî
1859 nî tī kî-thaⁿ le̍k-hoat
Kan-chi Bō͘-ngó͘
kàu
Kí-bī
Tân-kì 4192 nî
Gregorius le̍k 1859 nî
MDCCCLIX
Julius le̍k pí Gregorius le̍k chá 12 kang
Hu̍t-le̍k 2403 nî
Hoê-le̍k 1276~1277
Hông-kì 2519 nî
Hi-pek-lâi-le̍k 5619~5620
Se-chōng-le̍k iông thó͘ bé (sa pho rta)
kàu
im thó͘ iûⁿ (sa mo lug)
Hindu le̍k
- Vikram Samvat 1914 – 1915
- Shaka Samvat 1781 – 1782
Iran le̍k 1237 – 1238
Runic le̍k 2109
Assyria le̍k 6609 nî
Ethiopia le̍k 1853~1854

1859 nîGregorius Le̍k-hoat lāi-bīn sī chi̍t ê pêng-nî, thâu kang sī pài-la̍k; tī Julius Le̍k-hoat lāi-bīn sī chi̍t ê pêng-nî, thâu kang sī pài-sì. Chia nî tī Gregorius Le̍k-hoat lāi-bīn pí Julius Le̍k-hoat chá 12 kang. Pō͘-hūn kok-ka tī 1923 nî í-chêng iáu ēng Julius Le̍k-hoat.

Liân-hō[siu-kái | kái goân-sí-bé]

Tang A-chiu kun-chú kì-goân[siu-kái | kái goân-sí-bé]

Sū-kiāⁿ[siu-kái | kái goân-sí-bé]

Chéng ê Khí-goân

Bô ji̍t-kî[siu-kái | kái goân-sí-bé]

Chhut-sì[siu-kái | kái goân-sí-bé]

Bô ji̍t-kî[siu-kái | kái goân-sí-bé]

Kòe-sin[siu-kái | kái goân-sí-bé]

Bô ji̍t-kî[siu-kái | kái goân-sí-bé]

Ji̍t-chì[siu-kái | kái goân-sí-bé]

1859 nî
(Gregorius Le̍k-hoat)
1 goe̍h 2 goe̍h 3 goe̍h
LP P1 P2 P3 P4 P5 P6
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
LP P1 P2 P3 P4 P5 P6
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28
LP P1 P2 P3 P4 P5 P6
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
4 goe̍h 5 goe̍h 6 goe̍h
LP P1 P2 P3 P4 P5 P6
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
LP P1 P2 P3 P4 P5 P6
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
LP P1 P2 P3 P4 P5 P6
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30
7 goe̍h 8 goe̍h 9 goe̍h
LP P1 P2 P3 P4 P5 P6
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
LP P1 P2 P3 P4 P5 P6
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
LP P1 P2 P3 P4 P5 P6
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
10 goe̍h 11 goe̍h 12 goe̍h
LP P1 P2 P3 P4 P5 P6
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
LP P1 P2 P3 P4 P5 P6
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30
LP P1 P2 P3 P4 P5 P6
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31