1713 nî

Wikipedia (chū-iû ê pek-kho-choân-su) beh kā lí kóng...
跳至導覽 跳至搜尋
chhian-liân-kí: 2 chhian-liân-kí
sè-kí: 17 sè-kí | 18 sè-kí | 19 sè-kí
cha̍p-nî-kí: 1680 nî-tāi | 1690 nî-tāi | 1700 nî-tāi | 1710 nî-tāi | 1720 nî-tāi | 1730 nî-tāi | 1740 nî-tāi
: 1708 nî | 1709 nî | 1710 nî | 1711 nî | 1712 nî | 1713 nî | 1714 nî | 1715 nî | 1716 nî | 1717 nî | 1718 nî
1713 nî tī kî-thaⁿ le̍k-hoat
Kan-chi Jîm-sîn
kàu
Kùi-sū
Tân-kì 4046 nî
Gregorius le̍k 1713 nî
MDCCXIII
Julius le̍k pí Gregorius le̍k chá 11 kang
Hu̍t-le̍k 2257 nî
Hoê-le̍k 1125~1126
Hông-kì 2373 nî
Hi-pek-lâi-le̍k 5473~5474
Se-chōng-le̍k iông chúi lêng (chu pho 'brug)
kàu
im chúi choâ (chu mo sbrul)
Hindu le̍k
- Vikram Samvat 1768 – 1769
- Shaka Samvat 1635 – 1636
Iran le̍k 1091 – 1092
Runic le̍k 1963
Assyria le̍k 6463 nî
Ethiopia le̍k 1707~1708

1713 nîGregorius Le̍k-hoat lāi-bīn sī chi̍t ê pêng-nî, thâu kang sī lé-pài-ji̍t; tī Julius Le̍k-hoat lāi-bīn sī chi̍t ê pêng-nî, thâu kang sī pài-sì. Chia nî tī Gregorius Le̍k-hoat lāi-bīn pí Julius Le̍k-hoat chá 11 kang. Pō͘-hūn kok-ka tī 1923 nî í-chêng iáu ēng Julius Le̍k-hoat.

Liân-hō[siu-kái | kái goân-sí-bé]

Tang A-chiu kun-chú kì-goân[siu-kái | kái goân-sí-bé]

Sū-kiāⁿ[siu-kái | kái goân-sí-bé]

Bô ji̍t-kî[siu-kái | kái goân-sí-bé]

  • Sanctio Pragmatica, Habsburg ê Karl 6-sè khak-jīm ông-ūi ē-tàng hō͘ cha-bó͘-kiáⁿ chiap.

Chhut-sì[siu-kái | kái goân-sí-bé]

Kòe-sin[siu-kái | kái goân-sí-bé]

Ji̍t-chì[siu-kái | kái goân-sí-bé]

1713 nî
(Gregorius Le̍k-hoat)
1 goe̍h 2 goe̍h 3 goe̍h
LP P1 P2 P3 P4 P5 P6
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
LP P1 P2 P3 P4 P5 P6
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28
LP P1 P2 P3 P4 P5 P6
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
4 goe̍h 5 goe̍h 6 goe̍h
LP P1 P2 P3 P4 P5 P6
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30
LP P1 P2 P3 P4 P5 P6
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
LP P1 P2 P3 P4 P5 P6
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30
7 goe̍h 8 goe̍h 9 goe̍h
LP P1 P2 P3 P4 P5 P6
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31
LP P1 P2 P3 P4 P5 P6
1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31
LP P1 P2 P3 P4 P5 P6
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
10 goe̍h 11 goe̍h 12 goe̍h
LP P1 P2 P3 P4 P5 P6
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
LP P1 P2 P3 P4 P5 P6
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30
LP P1 P2 P3 P4 P5 P6
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31